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This summary of the Intro to ML Safety Course (till the additional section on x-risks, etc.) will cover •

the main concepts behind AI safety (without too much of a technical focus).





These notes are, in no way shape or form, a substitute for the incredible course offered by the •

team at safe.ai. Instead, I'd say this is a useful litmus test to see if you're interested in investing 

time into self-studying this vast, vast field.





With all the hedging out of the way, let's get started with the four core aspects behind AI safety:
•

















































Note: Proxy gaming isn't really a major distinct part of AI alignment anymore, it's covered primarily by monitoring now.



We're now going to focus on the hazard parts - considering that hazards appear to be the most •

important part of our risk assessment equation:


FMEA - Failure Modes and Effect Analysis, established in the 1940s:
•

Identify failure modes
◦

Identify effects
◦

For each effect, Estimate the Severity (S)
◦

Identify “root causes” for each failure mode
◦

For each “root cause,” Estimate the Probability of Occurrence (O)
◦

Identify process controls and anomaly indicators
◦

For each failure mode and “root cause,” estimate Detectability (D)
◦

Calculate risk priority (S×O×D)
◦

Using risk priority numbers, mitigate high-risk events
◦

Better model, the Swiss Cheese Model (what we are mostly focusing on):
•




























Another, more defense/offense related model, the Bow Tie model:
•





















Now, when dealing with AI models and trying to diagnose areas where an AI safety issue •

(robustness, monitoring, alignment, or systemic safety) may arise, it is tempting to adopt a divide 

and conquer approach. The problem is that complex systems (a system consisting of many 

interacting components that exhibit collective behavior) cannot be divided without expecting the 

properties of it to change. 

 






















Quite infamously, complex systems have a lot of non-linear relationships, which make them •

hard to analyze.





























So now, what do we do? We could try decomposing the system anyways, but instead of just •

doing that, let's try using a system think approach as well: 

 



What is system think? Well, let's first look at the factors behind a tragedy:
•













Looking at the above, we see how it's important to model out the factors and feedback loops •

associated with a system to the best of our ability if we wish to decompose it in a sensible 

manner (sort of like how it's been done in R1, B1, and B2)





Another important thing that often gets neglected in modeling is the systemic factors of a •

system: the safety culture around it, social pressures, etc. Remember the AI winter? That wasn't 

because of any technological limitation, that was because of the culture around NNs at the 

time. 

 

 

 

 

 



Combining all that we've learned, we arrive at STAMP: •

 

 
























































Let's now take a moment to discuss another important part of hazards (in particular hazard •

exposure), black swans: 

 

 

 




































The issue with the above mathematical property is that our basic statistic tools (mean, mode, •

standard deviation, etc.) become useless since they'll ignore our long tail.





Long tails are everywhere!:
•

~0.1% of drugs generate a ~50% pharmaceutical industry sales.
◦

~0.2% of books account ~50% their sales.
◦

~1% of bands and solo artists earn ~77% of all revenue from recorded music.
◦




There's another concept known as thin-tailed distributions, so basically:
•

Long-tailed distribution: distributions with the presence of a long-tail: several data points ◦

occurring far from the "head" or central part of the distribution.


Thin-tailed distribution: distributions with the presence of a thin-tail: a portion of the ◦

distribution where the probability density decreases rapidly. 




Long-tail events are not necessarily extremely unlikely extreme long-tailed events are more likely •

than extreme thin-tail events.










Say we had a certain data point that is the product of many discrete variables:
•

 


























































Alright, we've focused on the 'hazard' parts of AI risk for quite some time now, let's now shift our •

attention to vulnerability (robustness).





It's helpful to think that we are at... WAR! Okay, maybe not that dramatically, but it is helpful to •

think that our poor little AI system is under attack by an adversary. 

 

Take the example of adversarial distortion, where our adversary crafts noise to trick our •

classification NN to classify incorrectly.


































 But, not all hope is lost yet:
•































Hmm, but how is this adversary doing all of this? How is this realistic at all?
•
























So as we can see, the adversary may be within our AI system all along... Hence, regardless of •

the number of systems involved, it is important for our system to be robust against anything. 

 

As an example of how easy it may be to fool our basic maths tools behind a NN, take the example •

of a binary classifier.





All is fine with our inputs and weights, but now, take a look at what happens if we add a small •

positive or negative value to our inputs.




"Yikes" would be an appropriate reaction, and a more formal response would be that we see how •

the cumulative effect of many small changes made by the adversary is powerful enough to 

completely flip a classification decision. 

 

In fact, the adversary is particularly cruel and wants to maximize our NN's loss. 
•




You're familiar with Gradient Descent and Stochastic Gradient Descent, tools used for adjusting •

our weights of the NN in the first place. Well, the same tools can be used against us:























However, it is quite simple to defend against a single step, so another trick under our adversary's •

sleeve is projected gradient descent, basically the above FGSM with multiple steps. 

 

How can we defend against PGD attacks? We need to specifically train our model on these •

artificially constructed steps (or as I like to call them, challenges) in order to make sure it's 

prepared for a real-world attack. 



























Now our adversary can be cruel with maximizing our loss, but it can also ridicule us by targeting •

its attacks and make our model look stupid by, say, classifying a Golden Retriever as a Great 

White Shark. 

 

 

 

 

 

 

Now, there are a plethora of techniques to try to defend from these attacks. We don't have the •

time to go through all of them (but will go through the most overarching ones), but this is an 

actively studied field of AI safety! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Also, just like transfer learning was a game-changer for our side, transferability is also vital for •

our adversaries: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, let's get into some methods to improve robustness: •

 ◦

 

 

 

 

 



 ◦

 

 

 

 

 

 

 

 ◦

 

 

 

 

 

 

 

Of course, the above three methods are highly general, but the reason they are so general (and •

not, say, training against a specifically generated noise) is that our adversaries will, for the most 

part, be unforeseen. The whole point of AI is that it's only good at what it's trained at, and that 

fact does not bode well for adversarial attacks.




























Hm, we appear to be stuck here. Let's take a moment to see what factors make our •

adversaries particularly strong: 

 

 

 

 

 

 

 

 

Aha! So it looks like our perfect adaptive model has parameters that can be trained to give the •

confidence that a data example is an adversary's example, and hence reduce their power. 

 

 

 

 

 

 

 

 

 

 

For this effort, ImageNet has created specific datasets to train up the model's adversarial •

robustness. ImageNet-R and ImageNet-A in particular: 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

We have been talking a lot about black swans, long-tailed distributions, and even about •

unknown unknowns. How do we detect these anomalies? Enter monitoring!





Similar to a method for fending off adversarial attacks, we'll make our model assign an anomaly •

score to each and every example it encounters. If the value crosses a threshold, it'll be 

recognized as an out-of-distribution example. 

 

 

 

 

 

 

 

 

 

 

 

 



How do we get this score? If you're familiar with production possibility curves in economics, •

we see something similar in the way we assess the performance of anomaly detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can also graph out the precision (true positives / true positives + false positives) and recall •

(true positives / true positives + false negatives), but AUROC is the most important concept to take 

away from this section.








 



Now, the problem with this approach so far (just solely relying on AUROC to provide an anomaly •

score) is that they tend to not work well in practice. For example, in CIFAR-10:

















Hence, we need another way to calculate an anomaly score to try to act as a baseline so that •

our results can be compared and scaled in a fair manner.





One approach is to just use our NN's confidence and maybe negate it. The problem with this is •

that our adversary can get away with its attacks quite well: 

 

 

 

 

 

 

 

 

There are a couple of better methods, some being too technical for the scope of this document •

(further reading here would be virtual logit formulas if you're up for it!). But two that are quite 

intuitive are outlier exposure and the related one-class learning approaches): 

Outlier exposure tries to directly teach the network to detect anomalies: instead of relying on ◦

an AUROC score on its own data set, we get it to generalize to another dataset.


In a similar fashion, we can also do one-class learning by training on one class of the ◦

data set and treating the rest as out-of-distribution data. 

 



Let's now shift our focus our discussion on monitoring by briefly talking about calibration of •

classifiers. As you know:


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The most common way to calculate proper loss is through the Brier score: •

 

 

 

 

 

 

 

 

The above can be written in the form of confidence bins, and hence, the score incentivizes •

classification models to not only be well-calibrated but highly accurate as well.





Notice the difference between the two:
•

Calibration refers to the idea that the classifier can express its uncertainty well so that the ◦

human operator can understand when to step in.


But accuracy just refers to whether a classifier classifies properly or not.
◦




Using the Brier score, we can plot a confidence interval chart, and using this chart, we can •

calculate quantiles (a common technique in descriptive statistics):





 

















































One of the most intriguing parts of machine learning is visualizing the training process, this is •

actually quite helpful and is part of the field called transparency. However, not all visualizations 

are actually that useful. 

 

One useful one is saliency maps, which help to highlight regions of significance for both images •

and text: 

































Another useful visualization is feature visualization, typically found in StyleGANs (which would be •

great further reading!)





An important of monitoring is trying to accurately catch an adversary in its attack. As things •

go, an adversary would not normally like to be detected, and so it often disguises itself (similar 

to Trojan malware in personal computing):


Data poisoning: This can be as small as 0.05% of the data set mind you!
◦

























Inducing a desired action: It is possible for an adversary to simply exploit a model's previous ◦

actions and input the desired input to achieve a target state. 

 

By the very nature of things, it is very hard to detect trojans, one extreme measure is to reverse-•

engineer the Trojan and search for the trigger labels it poisons with, but of course, this can't 

help much in the cases where it doesn't need to poison the data set. 

Another somewhat extreme measure is the idea of having another trained NN to analyze ◦

the NN for signs of a trojan or being 'trojaned'.





However, the good news is that, if a trojan is detected, it's relatively easy to remove it just by •

pruning the affected neurons. 

 

 



Proxy gaming is a fun introductory example to AI safety (see CoastRunners 7 first: https://•

www.youtube.com/watch?v=tlOIHko8ySg) - but as it turns out, the story is a lot bigger than it 

seems:





Proxy gaming is an example of emergent (unexpected) behavior from our models. Sometimes  •

capabilities emerge not with scale but by training for a long time, and sometimes unexplained 

performance spikes occur.





The main overarching explanation behind emergent behavior is a concept that strikes quite close •

to home for us humans (and all animals really): the idea of self-preservation:





	 	   



A (personally) really fascinating part of AI safety is the idea of honest models, which hence •

starts our discussion on pure AI alignment. 

 

 

Now, if our model has to lie in order to reach its end goal, we'd rather have it make a bad lie •

than a good lie: 

 

 

 

 



 

An interesting result arises when we try to cluster truth statements, say we set up an NLP •

model in a "lie-inducing environment" (LIE):





Deep down, the model has another answer, one that is more truthful. Clustering helps to •

reveal this truth! 

 

 

 



Something that caught the attention of the AI safety community early on was how large and •

complicated choose-your-own-adventure games turned out to be, and the number of useful 

properties they have akin to aligning large and complicated models!: 

Multiple competing objectives
◦

Long-context lengths and long-term consequences 
◦

Actions occur at a similar level of abstraction as explicit human thought/planning
◦

Balancing ambition and morals ◦

 

Hence, researchers started to model environments in a manner similar to CYOA games:
•




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



With the report, we're able to, in the end, connect the dots and realize what in-game actions and •

states relate to certain behaviors:





 

 

 

 

 

 

 

 

With these connections in place, we can try to arrive at a general conclusion about how the model •

behaves by also taking into account its power level in the report:


We measure the power in terms of watts, money, well-being, social influence, etc.
◦

Using a series of labels, we can try to estimate the power the model felt in that CYOA ◦

environment researchers constructed.





 



 

 

 

 

 

 

 



Hm, before our model's behavior of a strong desire for power emerges, it would be ideal to try to •

train our model on ethics. Fortunately, the ETHICS dataset was created for this purpose: 

 

 

If we are successful in trying to instill a sense of morality into our model, the next step would be to •

make sure that it can actually utilize all of these newfound robustness & monitoring 

techniques and morals to make quality decisions that benefit humanity. Enter systemic safety!





In our world, we have people known as 'superforecasters', who are way better than the •

reference population in forecasting thanks to a wide range of statistical tools and analyzing several 

prior examples. Hey, models are exceedingly great at both those things! 

 

 

 

 

 



 

A model that does this (known as an 'autocast') has been made using a dataset with thousands •

of forecasting questions and a context corpus of news organized chronologically.





And the result is...
•

Hm, what went wrong here?
•

 

 

 

Turns out that it's not only just calibration that is of vital importance. All that we have discussed till •

now, from honest models to robustness would be mostly futile if our AI is not cooperative.





 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

The methods for trying to get the whole of a model more cooperative are still being highly •

researched to this day. The main conclusion drawn as of late would be the idea that cooperation 

can be motivated by the desire to prevent social entropy in an environment. 

 

Credit: ML Safety Course - Intro to ML Safety: https://course.mlsafety.org/


